

Intractable constipation in children : A challenging problem

Seksit Osatakul Department of Pediatrics, Faculty of Medicine, Prince of Songkla University Hat Yai, Songkhla, Thailand

Toward Good Health and Well-being of Children

Division of Gastroenterology and Hepatology Department of Pediatrics, Faculty of Medicine Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand Email: seksit.o@psu.ac.th

Seksit Osatakul

Associate Professor Seksit Osatakul is currently Head of the Division of Pediatric Gastroenterology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Thailand. He obtained both M.D and the Thai Board of Pediatrics from the Faculty of Medicine, Ramathibodi Hospital, Mahidol University, then he trained in pediatric gastroenterology and hepatology at the Royal's Children Hospital, Brisbane, Australia. His area of interest is functional GI disorders, particularly defecation disorders in children.He was the President of Thai Pediatric Society of Gastroenterology and Hepatology between 2014-2016.

No conflict of interest

Objectives : To discuss

- 1. How to approach childhood intractable constipation
- 2. The diagnosis and management of intractable constipation, caused by defecation disorder as well as slow colonic transit

Intractable constipation : Definition

 Constipation not responding to optimal conventional treatment for at least 3 months.

ESPGHAN and NASPGHAN. JPGN 2014;58:258-74.

A case study : A 12-years old girl

- A 6-years history of constipation
- Defecated every 1-2 weeks, hard stools, spending >30 mins in the toilet, sometimes needing digital evacuation, with abdominal pain and loss of appetite
- Failure of treatment with milk of magnesia, senokot, bisacodyl, and tegaserod
- Very anxious about constipation
- Past history and physical examination were unremarkable
- Normal initial investigation

How should we do for this patient ?

Chronic treatment-resisted constipation : How to approach

1. Proper laxative dosage 2. Compliance To evaluate **3. Child abuse/sexual abuse** 4. Occult organic diseases **Internal anal sphincter** achalasia Spinal defects Dyssynergic defecation and slow colonic transit are the most common abnormalities underlying intractable constipation.

Colonic transit study in children with intractable constipation

	Normal	Slow transit	Outlet obstruction
Radionuclear (N=101) (Cook BJ, et al. J Ped Surg 2005)	25	50	26
Radiopaque markers (N=28) (Gutierrez C, et al JPGN 2002)	50	13	37 ^a

^a64% showed dyssynergic defecation by anorectal manometry (ARM)

Intractable constipation (based on colonic transit study)

- **1. Slow colonic transit**
- 2. Outlet obstruction (dyssynergic defecation)
- 3. Normal

Southwell BR. JPGN 2011; 53(Suppl 2):S1-86

Dyssynergic defecation in children

Theories to explain :

- Children may condition themselves to contract the EAS and close the anus in response to the urge to defecate.
- Could be due to painful bowel movements, trials to postpone defecation, faulty

learning. Abnormal defecation dynamics are considered to be a behavior, rather than a pathophysiological disorders.

What defects could lead to slow colonic transit constipation ?

Primary alteration of colonic motility

- Low substance P (tachykinin) smooth muscle contraction
- Abnormalities in nitric oxide syntase and VIP smooth muscle relaxation
- Loss of interstitial cell of Cajal intestinal pacemakers

Lyford GL, et al. Gut 2002. King SK, et al. Neurogastroenterol Motil 2010.

Secondary to massive chronic fecal retention

Southwell BR, et al. J Paediatr Child Health 2005. Mugie SM, et al. Nat Rev Gastroenterol Hepatol 2011.

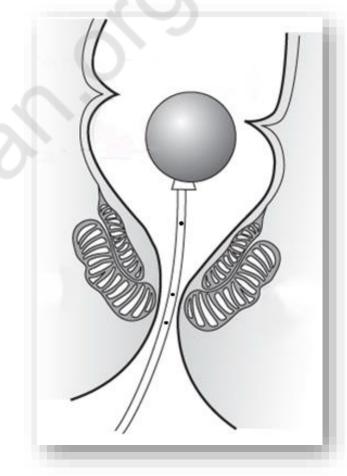
Colonic and anorectal functional testing

Defecatory function Balloon expulsion test EMG **Anorectal manometry** Defecography **Colonic function Colonic transit** Radiopaque markers **Scintigraphy Colonic manometry** Wireless motility capsule

Diagnostic procedures in disordered defecation

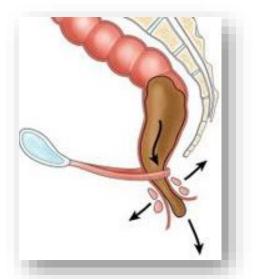
1. Balloon expulsion test

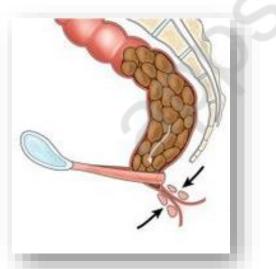
A 4-cm-long balloon, filled with 50 mL of warm water is placed in the rectum Positive - Fails to expel a rectal balloon by 1-3 mins Sensitivity 50%, false positive 0-16% 78% agreement with ARM

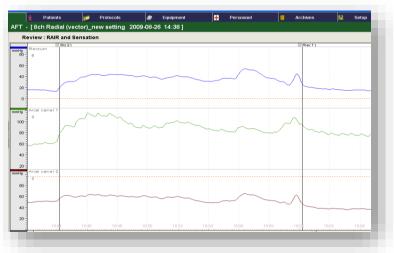

> Rao SSC. Gastroenterol Clin N Am 2008;37:569-86. Rao SCC, et al. Am J Gastroenterol 2005;100:1605-15. Wald A. JAMA 2016;315:185-91.

- 2. EMG Recording myoelectrical activity of the ext. anal sphincter
- 3. Anorectal manometry (ARM) Providing a comprehensive assessment of anorectal pressure activity, RSR, rectal sensation False positive 22-26%

Rao SSC. et al. Am J Gastroenterol 1999;94:773-83. Rao SCC, et al. Am J Gastroenterol 2006;101:2790-6.


Anorectal manometry


Pattern of defecation dynamics

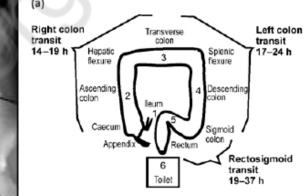

Normal defecation

Abnormal defecation

Colonic transit study

Radiopaque marker technique

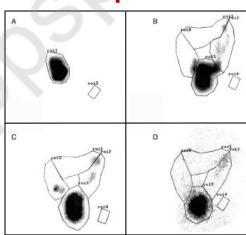
Single capsule (Sitz Mark)



Colonic inertia

Dyssynergic defecation

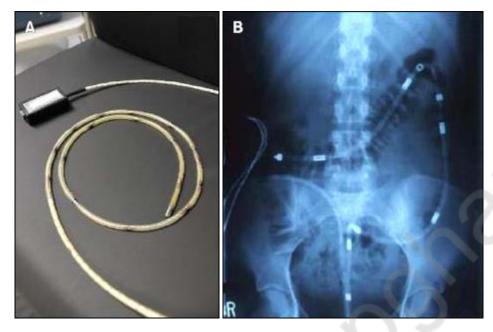
Multiple capsules


Total colonic transit 1–3 days

Southwell BR, et al. J Paediatr Child Health 2005.

Colonic inertia

Eun Ran Kim, et al.


2012.

J Neurogastroenterol Motil

Dyssynergic defecation

Cook BJ, et al. J Pediatr Surg 2005;40: 478-83.

Colonic manometry

Lee YY, et al. J Neurogastroenterol Motil 2014

High amplitude propagating contraction (HAPCs)

	Ni		
A A	X.X.		
 - 44	N. A	_	-
()	1		

Radiguez L, et al. Neurogastroenterol Motil 2016

Indication :

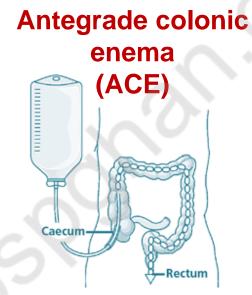
- 1. To confirm colonic inertia
- 2. Help in planning surgical interventions (ACE, diverting ileostomy, re-anastomosis of a diverted colon, colonic resection)

Treatment of intractable constipation in children

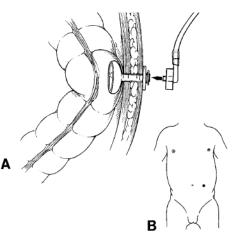
Dyssynergic defecation

- **Biofeedback therapy**
- Measures to decrease anal sphincter tone
 - Anal sphincter botulinum toxin injection Anal dilatation
 - Anal sphincter myectomy

Slow colonic transit


- Colonic irrigation Transanal irrigation Antegrade colonic enema (ACE) Ostomy Colectomy
- **Electrical stimulation**
 - Sacral nerve stimulation
 - **Transcutaneous interferential therapy**

Colonic irrigation

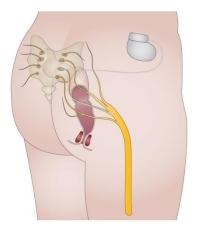

Indication : Slow transit constipation with severe fecal incontinence

Transanal irrigation

Lt. ACE (LACE)

Long-term FU : 30-80% - improvement in colonic manometry post ACE

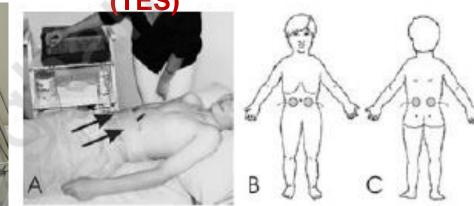
Aspirot A, et al. J Ped Surg 2009. Rodriguez L, et al. Neurogastroenterol Motil 2013.


15-35% - discontinued ACE

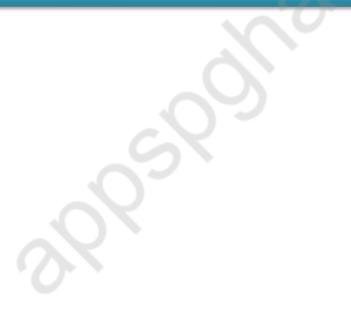
Jaffray B. J Ped Surg 2009. King SK, et al. J Ped Surg 2009. Rodriguez L, et al. Neurogastroenterol Motil 2013

Electrical stimulation

Mechanism : Inhibition of sympathetic nerve


Sacral N. stimulation

Mitchell, PJ. et al. Nat. Rev. Gastroenterol Hepatol 2013.


Transcutaneous electrical stimulation (TES)

Chase J, et al. J Gastroenterol Hepatol 2005.

How efficacious are these treatment ?

A Cochance review in biofeedback treatment in pediatric functional constipation

Study	Biofeedback n/N	Conventional n/N	Odds Ratio (Fixed) 95% CI	Waght (%)	Oxids Ratio (Rixed) 95% Cl
01 Up to 12-month follow-up	,				
Cccc 1999	12/31	4/27		5.5	363 [1.01, 13.12]
Davila 1992	8/10	611		2,4	333 [0.47, 2347]
Loaning-Baucke 1988	5/8	1/4		1.0	500 [0,34, 72,77]
Loening-Baucke 1990	11/22	16/19	<u> </u>	179	Q 19 [Q04, Q83]
Notan 1998	10/14	9/15		5.2	1.67 [0.35, 7.89]
Wald 1987	13/24	10/26		9.2	1.89 [0.61, 5.83]
van der Plas 1996	46/92	38/92) +	39.6	1.42 [0.79, 2.54]
van der Plas 1996a	16/34	17/32	-	193	0,78 [0,30, 2,06]
Subtotal (95% CI)	235	226	•	100,0	1.34 [0.92, 1.94]
Total events 121 (Biofeedbac	k), IOI (Conventional)				
Test for heterogeneity chi-squ	are=12.43 df=7 p=0.09	1=43.7%			
Test for overall effect z=1,53	p=Q1				
02 18-month follow-up					
van der Plas 1996	43/92	40/92	-	70.2	1.42 [0.79, 2.53]
		_	0.01 0.1 1 10 100		1
		F:	wours blofeedback Favours convert	cinal	(Continued)

Brazzelli M, Griffiths P. Cochrane Review 2001

Current Surgical Management of Pediatric Idiopathic Constipation

52 reports published during 1966-2014

Procedure (no. of study)	Success (%)	Complications (%)
Botox injection (2 non - RCTs)	78-100	N/S
Myectomy (8 non - RCTs)	75-91	N/S
Anal dilatation vs. placebo (1)	86 vs. 74 ^a	N/S
Botox vs. myectomy (1)	85 ^a	N/S
ACE (25 non - RCTs)	33-100	5-100
Colectomy (10 non - RCTs)	22-100	6-60
Ostomy (5 non - RCTs)	83-95	10-25

N/S, not specified; ^a comparable

Siminas S, et al. Ann Surg 2015;262:925-33.

Case study : progression

Barium enema

Colonic transit study

Case study : progression

Balloon expulsion test: Failed 50 ml. water-filled balloon expulsion

Anorectal manometry:

Diagnosis : Dyssynergic defecation

How do you treat this patient ?

- A. Biofeedback
- **B. Botox injection of IAS**
- C. Anal dilatation
- **D. Anal sphincter myectomy**
- E. Antegrade colonic enema

Treatment

Biofeedback Techniques

Training

Diaphragmatic breathing exercise

Relaxing the anal sphincter through trial and error with the help of therapists and visual feedback

Biofeedback device : anorectal manometry **No. of sessions :** usually 4-6 sessions; each session lasts 0.5 - 1 hr.

Bisacodyl 2 tabs hs., MOM 30 ml hs.

2nd BF - Relaxed the anal sphincter almost all attempts

Clinical – 2-3 bowel movements/wk.

Rx: MOM 30 ml hs., bisacodyl 1 tab hs.

After 2nd BF

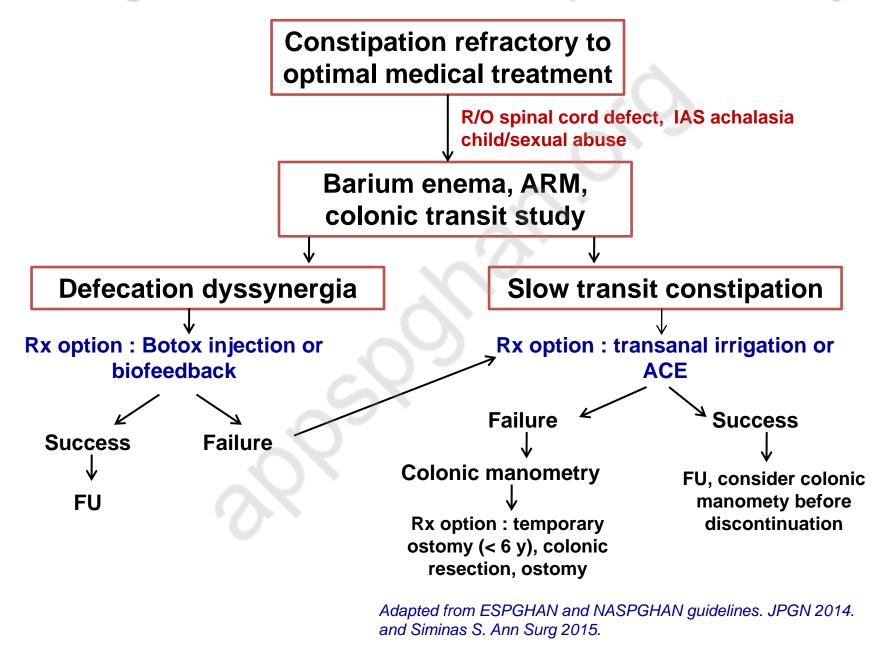
2 wk

No abdominal pain

- 3 bowel movements/wk.
- Rx : Bisacodyl 1 tab in alternate day MOM 30 ml hs.
 - No more BF

6 wk

Passing stool within 5 mins everyday MOM and bisacodyl were discontinued by herself


18 wk

Still improved

1 year (the last FU)

Having daily bowel movement No abdominal pain

Management of intractable constipation : Summary

appondent

What happens to children with intractable constipation who receive ACE

ACE may improve colonic motility (CM)

	Baseline abnormal CM (n)	Normalization of CM after ACE (n; %)
Aspirot A, et al. (N=7) J Ped Surg 2009	6	5 (83)
Rodriguez L, et al. (N=40) Neurogastroenterol Motil 2013	34	13 (38)

Is it possible to discontinue ACE ?

	Discontinued ACE (n; %)	Mean FU (yrs)
Jaffray B (N = 80) J Ped Surg 2009	12 (15)	8.8
King SK, et al. (N = 42) J Ped Surg 2009	15 (35)	2.6
Rodriguez L, et al. (N = 40) Neurogastroenterol Motil 2013	11 (27)	4